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Analytic description of stochastic calcium-signaling periodicity
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Calcium release is an important tool for cellular signaling processes where chemical signals are converted
into spatio-temporal variations of intracellular calcium concentration. We investigated the temporal behavior of
a single cluster of inositall,4,5-triphosphate receptor (4R)-1 channels and will present an analytic ap-
proach to obtain the spectrum of the calcium signal within the cluster. We compare these results with stochastic
simulations and obtain an intermediate number of channels per cluster for optimal signaling periodicity.
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INTRODUCTION chastic oscillations for an optimally selected noise level. The
corresponding optimal number of channels in one cluster, for
Calcium plays the role of an important intracellular andwhich the quality of oscillation becomes maximal, is com-

intercellular messenger in all types of cells and tissues. It iatible with estimates for real cells.
involved in processes ranging from signal transmission
across the synaptic cleft to muscle activity and from cell MODEL DESCRIPTION
fert_|I|zat|on and prohferatmn to programmeq cell death. Th!s The analysis presented in this report is based on the Li-
variety of tasks is accomplished by a spatio-temporal variaz

tion of the free calcium concentration which interacts with Rinzel model for the IBR-1 channel which is obtained by
calcium binding proteins which then, on the other hand, ful_reducmg the De Young-Keizer model to a two-state system.

fill a highly specific task; for a general introduction to cal- This model is valid for a single cluster f, subunits No/4
. gnly sp ’ 9 channel$ since channel interaction is assumed to be instan-
cium signaling see, e.g., Refd-3].

: . . taneous via the intracellular calcium concentrati@n
The elevation of fregintracellular or intercellulgr cal- —[C#']. Due to fast intracellular calcium diffusion can
glum t(r:lcéngsgct)ralggrr]nleiigljrgtitgult&r%lg)p gpcegsglecsakr:;ur&:ttg(rjesbe considered spatially constant on a submicrometer scale.
b.gi.(’)n channerl)s These are either sensitive to ;ner%brane dV\-/e describe the activity of channel subunits with the Li-
y 1on CTl ’ . L ' ORinzel model and the opening probability of a single channel
polarization (voltage gated or to ligands binding to their

receptors(ligand gategl Of importance for many cellular is then given by

processes is the ligand gated inositbj4,5-triphosphate re- P oper= X"+ 4x3(1-x), 1)

ceptor (IRR) channel, for review see Rd#]. It is present pc(l—vy)

in several types of tissues, e.g., neuronal tissue and smooth X=—7 7. 2
(p+Ky)(c+Ks)

muscle. The channel is composed of four subunits, each of

which is activated by 1Pand shows a bell shaped activation y andy are the probabilities of the subunit being activated or
dependence on calciufb], thus calcium induces and limits caicium inactivated, respectively, note thatorresponds to
its own releage. De Young and Keizer proposed an eight-staighe of the four noninhibited states=[IP] is the concen-
model[6] which was later reduced to a two-state system foliation of IP,. If N of the N, subunits are in the inactivated
this receptof7,8]. The channel is open if at least three out of g¢a1e the master equation for activation and inhibition of a
four subunits are activatd@]. single subunit is

Although patch clamp techniques and fluorescence mi-
croscopy allow single channel characterization amavivo dP(N,t)
measurements of channel activity on a micrometer scale, re- ot
spectively, the spatial distribution of ion channels across the
ER membrane and its function is not yet fully determined. In —DK'P(N=1t)+(N+ 1)K P(N+1p),
Ref.[10] individual C&" release sites were observed and it 3
is believed that clusters, each constituted of
0O(10-100) IRR channels, form the signaling basis. In Refs.with K~ andK™ being the activation and inactivation rates,
[11-13 the corresponding cluster signaling properties of arespectively,

=—[(Ng—N)K"+NK™JP(N,t)+(Ny—N

cluster were numerically characterized by power spectra as 2¢(K 1K1K+ KokaC+ KiKop)

function on the number of channels constituting one cluster. K*(c)= Kyt k) + 2K, (Kt p) (4)
We follow this idea that a certain number of ion channels clkatka) 1(Kitp

in the cluster creates a common level of noise. By a mean  2[k gk stk _o(k_4t+ksp)]

field description for the calcium concentration with imbed- - K_o,+Kk_4+2ks(Ks+p) ®

ded fluctuating subunits, it will be shown analytically that

the common noise plays a crucial role for the dynamics ofEquation(3) can be expanded fdi>1 to form a Fokker-
the cluster. As will be inspected by the power spectrum ofPlanck equation which in turn is equivalent to the Langevin
the calcium concentration, the cluster exhibits collective stoequation(compare Ref[13])
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TABLE |. Numeric model parameters. o=—1 i
K,=0.0785uM k;=400.0 (uM s)°? r,=04s1 q_ q,
K,=1.049 uM k,=0.3 (uM s)! r,=0.02s! 1 |
K3=0.312uM ks=400 (uM s)™*  rz=2.1 (uM s)? o=+1 |
K,=0.26393uM  k,=0.3 (uM s)?! Kp=0.08 uM - :
Ks=0.0823 uM ks=80 (uM s)™1 Co=2.0 uM p= -
p=1.15uM a=0.185 Py P

FIG. 2. Linearized nullclinegsolid lines, lefi and corresponding two-
state systentright), transitions are indicated by dashed arrows. One stable

) (1- y)K* +yK~ fixed point in the system leads to one stabédt branch and one unstable
y=(1-y)K —yK + /[ ——————&(t), () state(right branch. The solid arrows indicate coordinate directiogs. and
No P_ are sinks of probability which is absorbedfat andq_, respectively,
thus realizing the flow of probability,.

whereé(t) is zero-mean Gaussian white noise, MODEL REDUCTION

In order to find an analytic description we make further

(§(O&))=0o(t—t"). (1) simplifications. Analysis of the nullclines of the noise-free

Egs. (6,9, cf. Fig. 1, shows one fixed point atcy®)

=(0.07686251M,0.080218) in an excitable system. We as-

sume a fast transition after an overthreshold disturbance out
of the fixed point to the right branch of the=0 nulicline

(A—B) followed be a slow inhibition procegicreasing y,

) B—C) along this branch, this corresponds to the slow cal-
cium inhibition of the IRR-I-the parametens andK, were
chosen accordingly. When reaching the local maximum of

The first term models the gradient-dependent influx’(Ca c=0 another fast transition occurs to the left branéh (

source while the second term represents the activity of the—D) and the trajectory slowly relaxes towards the fixed

SERCA pump (C&" sink) which re-establishes this gradi- point. Although time scale separation is smallr(

ent;r,, r,, andrg are channel, leak and pump rates, respec-r,]/K~=1.6) for the sake of analytic treatment perfect

tively, cer=(Co—c)/a is the endoplasmatic reticulum cal- time scale separation is assumed. This defines a two-state
cium concentrationg is the ratio of ER volume to cell Process switching between low and high intracellular cal-
for a fixed amount of total cell calcium; our numeric stan-this process and computed its spectrum. The following ap-
dard parameters of the whole model, including the dissociaProach provides an analytical basis.

tion constant&; =k_; /k; of the IRR-l, are given in Table I. F|rstly,_ we Ilnea_rly approximate the r_elevant _branches of

Most of them are taken from Reff6], some were changed the nuliclines, cf. Fig. 2, and the Langevin equations take the

due to new measuremenfd4] and some were slightly form

changed by us to investigate other regimes.

The intracellular calcium concentration is determined by

C2

é=(r1P +r,5)(Ceg—C)—r3———.
oper 2 K2

Ca=F(Ca)—Y1Ya ©)
0.3 Y% —Y™c, right branch

F.(Ca)= 1

) =(Ca) Y% —Y™c, left branch, (10
y y=

Ya=YCat ¥0— YaYat V2QE(H). (11

0.2 The left branch is approximated by a line through the points
A and D determining the slop&/™=2.022 s'!, the right
.~ branch is substituted by a line with the same slope
Y™ through point C; the linearized nuIIcIin%=O is
determined by the two intersections §f=0 with the
0.1 linearized nuliclines y,=F.(c,); other values are:
------------------------------- AN {Y%,Y%1={0.873,0.24p uM s %, y=0.773uM 151,
A B ¥0=0.0215 s, Y;=1 uM s%, andY,=1s'. Comput-
ing the noise along an excitation cycle, it varies by a factor
of 3; here we neglect this fact and replace the phase state
0 dependent noise by its intensity taken in the fixed point,

M
o 02 04  o06cliMlog (1-y9K*+yK~  0.0153453 5!
FIG. 1. Nuliclines of Egs(6,8). In the noisy excitable regime transitions Q= ~ N . (12
0

ideally occur along the arrows. 2Ny

&=
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This is justified if one considers the main effect of the noise 0.5
being the disturbance of the trajectory from the fixed point,
which determines how often excitations occur. Inserting Eq. @ :

(9) into Eq. (12), introducing a dimensionless time Z
Y
r=vot,  vo=Ypt 2, (13)
y" 0.3

and performing the variable transformations,

B yY° 0.2
d=VYa— W"‘?’o vo and
e 0.1+
P=—Yat WJFVO /Vo, (14 .
0 2 4 6 8 w 10

one obtains a set of symmetric Langevin equations with
boundary conditionscf. Fig. 2),

FIG. 3. Power spectr&(w) of the linearized analytic model, noise
values are in the ordeig)—(e): D=0.005, 103, 10°°, 104, and 10°.
The inset shows a contour plot N{D, w) and the mean frequenay,,, from

G=—0+2D&(r) and p=-p+\2D&(r), (15  Eq (20,

with the rescaled noise intensily=Q/vo. which corresponds to the time scale given by the sum of

mean first passage times fqr. —q_ andp, —p_ .

The spectrum for the linearized system is depicted in Fig.

Referencd 15] gives the solution to a two-state system 3. For a small noise intensityarge number of channglshe
o==+1, cf. Fig. 2, possessing the dynamics of Etp). The  power spectrum is a monotonous function @f As noise
spectrum has the forifil6] increasesreducing the number of channels per cluster
peak appears which shifts to higher frequencies for rising
noise, it finally vanishes if noise surpasses a certain value
(few channelsabove which the spectrum becomes monoto-
nously decreasing again. For some small noise levels the

RESULTS

N(w)= f:cd7'<0'(t)0'(t+ ))eer

8J0n [1—\/\rq(w)][1—vv5(w)]) 16 second harmonic of the peak is visible. There exists an inter-
o2 1— Wa( ) Ws( ) : mediate noise level for which the quantity
The stationary current), and the Fourier transforms G= Nimax -~ Nrmax (21)
W; 5(w) of the waiting time distributions are given by JVAN?  2A;N?
Jo= f‘h“ dze? erfa(2) reaches a maximum value; this indicates coherence reso-
q_ 12D nance and for the corresponding number of channels calcium
signaling can be considered most regular.

+Jp+/ dze”erfo(z)

/\/— (17) The above assumptions and simplifications entitle to
p_ /2D

question the validity of the description for the underlying
stochastic system. We therefore performed stochastic simu-
1. lations of the unreduced Li-Rinzel model7]. Each of the
,q+/\/—) four channel subunits was treated according to the Li-Rinzel

a2 ?42)/4DU( —iw

Wy(w)= , (18 model, i.e., the procesqt) =0 or 1, to decide for transitions
( —iw— q /\/—) between these two states uniformly distributed random num-
bers pe[0,1] were computed and ip;At<K= the corre-
sponding transition was set. For noninhibited subunits an-
e(Bi—BZ)MDU( —iw— E 5 /\/5) other random number,<x selects the activated state out of
2'0 the four possible noninhibited states. A channel opens if
1. . (19 three or four subunits are in the open state and the fraction
U( —lo—3,p- /\/5) N°PeYN, of open channels substitutdl,e,in Eq. (8). The
evolution of c(t) was sampled withAt=0.01 s for a time
whereU(a,z) denotes the parabolic cylinder function. The T=2621.44 s and the time series was then zero averaged and

Wi(w)=

Stanonary Currenﬂo determlnes a frequency faSt Founer transformed In Order tO Obta|n a Smooth pOWer
spectrum, we averaged over 300 runs and the results are
wn=2mJy, (20 displayed in Fig. 4.
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FIG. 5. The quality of oscillationsi from Eq. (21), dependent on the
umber of subunits per clustét, of the stochastic simulatioftircles is
compared with the analytic resukolid line) and shows very good agree-

) ) ) ment. The maximum foN,~450 indicates optimal signaling periodicity.
For a single channgmaximal noise levelthe spectrum  The maximum value o6 was rescaled to unity.

shows no peak, but monotonically falls off for increasing
frequencies. If_ the_ number of subunii, is increased, i.e., gbtain an exact value for the full peak width at half maxi-
the system noise is reduced, a peak emerges, reaches a Meslim and therefore, we use the left sided version. The com-
mum value, and later starts to disappear again for very large . ! ; ) S .
clusters. Thus, the simulations show the same qualitative pd2arson of analytic and stochastic calculations is given in
havior as our simplified model discussed above. For th&'9- 5 and shows excellent agreement, fé§>3000 the
comparison of Figs. 3 and 4 please note the different frebeak inN(w) starts to vanish and thi@ was indeterminable
quency axes: while Fig. 4 already uses the natural frequencjPr these values. o _
according tov=vyw/27~0.220 s *. in Refs.[11-13, which showed the existence of a certain

range of cluster size where signaling properties become most
periodic. Here, we presented analytic evidence for that in a
cluster of IRR-I calcium ion channels which interact instan-
To answer the key question—what is the optimal numbetaneously. We found a range of 80-3000 subufitsrre-
of channels per cluster with respect to signalingsponding to 20-750 channglger cluster optimal for signal-
periodicity—we calculated the quantity of Eq. (21) which  ing periodicity. The key parameter is the cluster size, i.e., the
represents the quality of the stochastic oscillation. Due to theumber of subunits or channels, governing the fluctuations in
second harmonic peak in the spectrum it is not possible tthe clusters mean open probability.

FIG. 4. Power spectril(w) of the stochastic model for different num-
bers N of subunits in the cluster, smoothed by applying a 10-point average
filter to the mean of 300 rund 50 runs forN=20000).

CONCLUSION
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