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Analytic description of stochastic calcium-signaling periodicity
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Calcium release is an important tool for cellular signaling processes where chemical signals are converted
into spatio-temporal variations of intracellular calcium concentration. We investigated the temporal behavior of
a single cluster of inositol-~1,4,5!-triphosphate receptor (IP3R)-I channels and will present an analytic ap-
proach to obtain the spectrum of the calcium signal within the cluster. We compare these results with stochastic
simulations and obtain an intermediate number of channels per cluster for optimal signaling periodicity.
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INTRODUCTION

Calcium plays the role of an important intracellular a
intercellular messenger in all types of cells and tissues.
involved in processes ranging from signal transmiss
across the synaptic cleft to muscle activity and from c
fertilization and proliferation to programmed cell death. Th
variety of tasks is accomplished by a spatio-temporal va
tion of the free calcium concentration which interacts w
calcium binding proteins which then, on the other hand, f
fill a highly specific task; for a general introduction to ca
cium signaling see, e.g., Refs.@1–3#.

The elevation of free~intracellular or intercellular! cal-
cium concentration is due to the opening of calcium stor
e.g., the endoplasmatic reticulum~ER! or vesicles, regulated
by ion channels. These are either sensitive to membrane
polarization ~voltage gated! or to ligands binding to their
receptors~ligand gated!. Of importance for many cellula
processes is the ligand gated inositol-~1,4,5!-triphosphate re-
ceptor (IP3R) channel, for review see Ref.@4#. It is present
in several types of tissues, e.g., neuronal tissue and sm
muscle. The channel is composed of four subunits, eac
which is activated by IP3 and shows a bell shaped activatio
dependence on calcium@5#, thus calcium induces and limit
its own release. De Young and Keizer proposed an eight-s
model@6# which was later reduced to a two-state system
this receptor@7,8#. The channel is open if at least three out
four subunits are activated@9#.

Although patch clamp techniques and fluorescence
croscopy allow single channel characterization andin vivo
measurements of channel activity on a micrometer scale
spectively, the spatial distribution of ion channels across
ER membrane and its function is not yet fully determined.
Ref. @10# individual Ca21 release sites were observed and
is believed that clusters, each constituted
O(10–100) IP3R channels, form the signaling basis. In Re
@11–13# the corresponding cluster signaling properties o
cluster were numerically characterized by power spectra
function on the number of channels constituting one clus

We follow this idea that a certain number of ion chann
in the cluster creates a common level of noise. By a m
field description for the calcium concentration with imbe
ded fluctuating subunits, it will be shown analytically th
the common noise plays a crucial role for the dynamics
the cluster. As will be inspected by the power spectrum
the calcium concentration, the cluster exhibits collective s
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chastic oscillations for an optimally selected noise level. T
corresponding optimal number of channels in one cluster,
which the quality of oscillation becomes maximal, is com
patible with estimates for real cells.

MODEL DESCRIPTION

The analysis presented in this report is based on the
Rinzel model for the IP3R-I channel which is obtained by
reducing the De Young-Keizer model to a two-state syste
This model is valid for a single cluster ofN0 subunits (N0/4
channels! since channel interaction is assumed to be inst
taneous via the intracellular calcium concentrationc
5@Ca21#. Due to fast intracellular calcium diffusionc can
be considered spatially constant on a submicrometer sc
We describe the activity of channel subunits with the L
Rinzel model and the opening probability of a single chan
is then given by

Popen5x414x3~12x!, ~1!

x5
pc~12y!

~p1K1!~c1K5!
. ~2!

x andy are the probabilities of the subunit being activated
calcium inactivated, respectively, note thatx corresponds to
one of the four noninhibited states,p5@ IP3# is the concen-
tration of IP3. If N of the N0 subunits are in the inactivate
state, the master equation for activation and inhibition o
single subunit is

]P~N,t !

]t
52@~N02N!K11NK2#P~N,t !1~N02N

21!K1P~N21,t !1~N11!K2P~N11,t !,

~3!

with K2 andK1 being the activation and inactivation rate
respectively,

K1~c!5
2c~K1k1k41k2k4c1k1k2p!

c~k21k4!12k1~K11p!
, ~4!

K25
2@k23k241k22~k241k3p!#

k221k2412k3~K31p!
. ~5!

Equation~3! can be expanded forN@1 to form a Fokker-
Planck equation which in turn is equivalent to the Lange
equation~compare Ref.@13#!
©2002 The American Physical Society01-1
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ẏ5~12y!K12yK21A~12y!K11yK2

N0
j~ t !, ~6!

wherej(t) is zero-mean Gaussian white noise,

^j~ t !j~ t8!&5d~ t2t8!. ~7!

The intracellular calcium concentration is determined by

ċ5~r 1Popen1r 2!~cER2c!2r 3

c2

c21Kp
2

. ~8!

The first term models the gradient-dependent influx (Ca21

source! while the second term represents the activity of
SERCA pump (Ca21 sink! which re-establishes this grad
ent; r 1 , r 2, andr 3 are channel, leak and pump rates, resp
tively, cER5(C02c)/a is the endoplasmatic reticulum ca
cium concentration,a is the ratio of ER volume to cel
volume, andC0 is a constant, representing a local conditi
for a fixed amount of total cell calcium; our numeric sta
dard parameters of the whole model, including the disso
tion constantsKi5k2 i /ki of the IP3R-I , are given in Table I.
Most of them are taken from Ref.@6#, some were change
due to new measurements@14# and some were slightly
changed by us to investigate other regimes.

TABLE I. Numeric model parameters.

K150.0785mM k15400.0 (mM s)21 r 150.4 s21

K251.049mM k250.3 (mM s)21 r 250.02 s21

K350.312mM k35400 (mM s)21 r 352.1 (mM s)21

K450.26393mM k450.3 (mM s)21 Kp50.08mM
K550.0823 mM k5580 (mM s)21 C052.0 mM
p51.15mM a50.185

FIG. 1. Nullclines of Eqs.~6,8!. In the noisy excitable regime transition
ideally occur along the arrows.
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e
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MODEL REDUCTION

In order to find an analytic description we make furth
simplifications. Analysis of the nullclines of the noise-fre
Eqs. ~6,8!, cf. Fig. 1, shows one fixed point at (cs,ys)
5(0.0768625mM ,0.080218) in an excitable system. We a
sume a fast transition after an overthreshold disturbance
of the fixed point to the right branch of theċ50 nullcline
(A→B) followed be a slow inhibition process~increasing y,
B→C) along this branch, this corresponds to the slow c
cium inhibition of the IP3R-I–the parametersr i andKp were
chosen accordingly. When reaching the local maximum
ċ50 another fast transition occurs to the left branchC
→D) and the trajectory slowly relaxes towards the fix
point. Although time scale separation is small (@r 1
1r 2#/K251.6) for the sake of analytic treatment perfe
time scale separation is assumed. This defines a two-s
process switching between low and high intracellular c
cium concentration. Shuaiet al. @13# numerically described
this process and computed its spectrum. The following
proach provides an analytical basis.

Firstly, we linearly approximate the relevant branches
the nullclines, cf. Fig. 2, and the Langevin equations take
form

ċa5F6~ca!2Y1ya ~9!

F6~ca!5H Y1
0 2Ymca right branch

Y2
0 2Ymca left branch,

~10!

ẏa5gca1g02Y2ya1A2Qj~ t !. ~11!

The left branch is approximated by a line through the poi
A and D determining the slopeYm52.022 s21, the right
branch is substituted by a line with the same slo
Ym through point C; the linearized nullclineẏa50 is
determined by the two intersections ofẏ50 with the
linearized nullclines ya5F6(ca); other values are:
$Y1

0 ,Y2
0 %5$0.873,0.246% mM s21, g50.773mM 21 s21,

g050.0215 s21, Y151 mM s21, and Y251 s21. Comput-
ing the noise along an excitation cycle, it varies by a fac
of 3; here we neglect this fact and replace the phase s
dependent noise by its intensity taken in the fixed point,

Q5
~12ys!K11ysK2

2N0
'

0.0153453 s21

N0
. ~12!

FIG. 2. Linearized nullclines~solid lines, left! and corresponding two-
state system~right!, transitions are indicated by dashed arrows. One sta
fixed point in the system leads to one stable~left branch! and one unstable
state~right branch!. The solid arrows indicate coordinate directions.q̃2 and
p̃2 are sinks of probability which is absorbed atp̃1 and q̃2 , respectively,
thus realizing the flow of probabilityJ0.
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This is justified if one considers the main effect of the no
being the disturbance of the trajectory from the fixed po
which determines how often excitations occur. Inserting
~9! into Eq. ~11!, introducing a dimensionless timet

t5n0t, n05Y21
gY1

Ym
, ~13!

and performing the variable transformations,

q̃5ya2S gY2
0

Ym
1g0D Y n0 and

p̃52ya1S gY1
0

Ym
1g0D Y n0 , ~14!

one obtains a set of symmetric Langevin equations w
boundary conditions~cf. Fig. 2!,

q̇̃52q̃1A2Dj~t! and ṗ̃52 p̃1A2Dj~t!, ~15!

with the rescaled noise intensityD5Q/n0.

RESULTS

Reference@15# gives the solution to a two-state syste
s561, cf. Fig. 2, possessing the dynamics of Eq.~15!. The
spectrum has the form@16#

N~v!5E
2`

`

dt^s~ t !s~ t1t!&eivt

5
8J0

v2
ReS @12Wq̃~v!#@12Wp̃~v!#

12Wq̃~v!Wp̃~v!
D . ~16!

The stationary currentJ0 and the Fourier transform
Wq̃,p̃(v) of the waiting time distributions are given by

J05F E
q̃2 /A2D

q̃1 /A2D
dzez2

erfc~z!

1E
p̃2 /A2D

p̃1 /A2D
dzez2

erfc~z!G21Y Ap, ~17!

Wq̃~v!5

e(q̃1
2

2q̃2
2 )/4DUS 2 iv2

1

2
,q̃1 /AD D

US 2 iv2
1

2
,q̃2 /AD D , ~18!

Wp̃~v!5

e( p̃1
2

2 p̃2
2 )/4DUS 2 iv2

1

2
,p̃1 /AD D

US 2 iv2
1

2
,p̃2 /AD D , ~19!

whereU(a,z) denotes the parabolic cylinder function. Th
stationary currentJ0 determines a frequency

vm52pJ0 , ~20!
05090
e
t,
.

h

which corresponds to the time scale given by the sum
mean first passage times forq̃1→q̃2 and p̃1→ p̃2 .

The spectrum for the linearized system is depicted in F
3. For a small noise intensity~large number of channels! the
power spectrum is a monotonous function ofv. As noise
increases~reducing the number of channels per cluster! a
peak appears which shifts to higher frequencies for ris
noise, it finally vanishes if noise surpasses a certain va
~few channels! above which the spectrum becomes mono
nously decreasing again. For some small noise levels
second harmonic of the peak is visible. There exists an in
mediate noise level for which the quantity

G5
Nmax

ADN2
'

Nmax

2AD1/2N
2

~21!

reaches a maximum value; this indicates coherence r
nance and for the corresponding number of channels calc
signaling can be considered most regular.

The above assumptions and simplifications entitle
question the validity of the description for the underlyin
stochastic system. We therefore performed stochastic si
lations of the unreduced Li-Rinzel model@17#. Each of the
four channel subunits was treated according to the Li-Rin
model, i.e., the processy(t)50 or 1, to decide for transitions
between these two states uniformly distributed random nu
bers rP@0,1# were computed and ifr1Dt,K6 the corre-
sponding transition was set. For noninhibited subunits
other random numberr2,x selects the activated state out
the four possible noninhibited states. A channel opens
three or four subunits are in the open state and the frac
Nopen/N0 of open channels substitutedPopen in Eq. ~8!. The
evolution of c(t) was sampled withDt50.01 s for a time
T52621.44 s and the time series was then zero averaged
fast Fourier transformed. In order to obtain a smooth pow
spectrum, we averaged over 300 runs and the results
displayed in Fig. 4.

FIG. 3. Power spectraN(v) of the linearized analytic model, nois
values are in the order~a!–~e!: D50.005, 1023, 1026, 1024, and 1025.
The inset shows a contour plot ofN(D,v) and the mean frequencyvm from
Eq. ~20!.
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For a single channel~maximal noise level! the spectrum
shows no peak, but monotonically falls off for increasi
frequencies. If the number of subunitsN0 is increased, i.e.
the system noise is reduced, a peak emerges, reaches a
mum value, and later starts to disappear again for very la
clusters. Thus, the simulations show the same qualitative
havior as our simplified model discussed above. For
comparison of Figs. 3 and 4 please note the different
quency axes: while Fig. 4 already uses the natural freque
in Fig. 3 one obtains the natural frequency after resca
according ton5n0v/2p'0.22v s21.

CONCLUSION

To answer the key question—what is the optimal num
of channels per cluster with respect to signali
periodicity—we calculated the quantityG of Eq. ~21! which
represents the quality of the stochastic oscillation. Due to
second harmonic peak in the spectrum it is not possible

FIG. 4. Power spectraN(v) of the stochastic model for different num
bers N of subunits in the cluster, smoothed by applying a 10-point ave
filter to the mean of 300 runs~150 runs forN520000).
l.
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obtain an exact value for the full peak width at half max
mum and therefore, we use the left sided version. The c
parison of analytic and stochastic calculations is given
Fig. 5 and shows excellent agreement, forN0.3000 the
peak inN(v) starts to vanish and thusG was indeterminable
for these values.

In a numeric first approach similar results were obtain
in Refs. @11–13#, which showed the existence of a certa
range of cluster size where signaling properties become m
periodic. Here, we presented analytic evidence for that i
cluster of IP3R-I calcium ion channels which interact insta
taneously. We found a range of 80–3000 subunits~corre-
sponding to 20-750 channels! per cluster optimal for signal-
ing periodicity. The key parameter is the cluster size, i.e.,
number of subunits or channels, governing the fluctuation
the clusters mean open probability.

ge
FIG. 5. The quality of oscillations,G from Eq. ~21!, dependent on the

number of subunits per clusterN0 of the stochastic simulation~circles! is
compared with the analytic result~solid line! and shows very good agree
ment. The maximum forN0'450 indicates optimal signaling periodicity
The maximum value ofG was rescaled to unity.
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